
ITS336 Lecture 5.

Local Search

5.1. Local Search Algorithms
In many search problems, the path from the initial state to the goal is not (4.1)
important, but the final configuration of the goal is the target of the problem,
e.g., 8-queens problem.

Local search is a group of algorithms that focus on this kind of problems.
Since the path is not matter, local search algorithms typically keep only one
node while operating.

Apart from searching for goal states, the algorithms can be used to solve
optimization problems. The optimization problems aim to find the state
with the best value of an objective function.

current
state

objective function

state space

global maximum

local maximum
“flat” local maximum

shoulder

69



ITS336 ITS336 Lecture 5. Local Search

5.2. Hill Climbing Search
Hill climbing search algorithm repeatedly moves the current node to the di- (4.1.1)
rection that increases (or decreases) the objective value. It ends when the
current node reaches a peak where no neighbor has a higher value.

Code 5.1 Hill Climbing Algorithm implemented in Python
1 def hill_climbing(s�, succ, f):
2 # s� = initial state
3 # succ = successor function
4 # f = evaluation function
5 u = s�
6 while True:
7 s = succ(u)
8 v = max(s, key=f)
9 if f(v) > f(u):
1� u = v
11 else:
12 return u

70



ITS336 ITS336 Lecture 5. Local Search

Example 5.1 To solve the 8-queens problem by the Hill Climbing algo-
rithm, we need to define a function that evaluates each state.

We can use the number of attacks among the queens on the board as an
evaluation value of a state. Thus, f(s) returns the number of attacks given a
state s. The search can start from a randomly created board with one queen
placed in each column.

A successor state can be generated by selecting one queen and change its
row position.

Here, we search for the state with f = 0.

Q

Q

Q

Q

f = 4

Q

Q

Q

Q

4

5

4

Q

Q

Q

Q

4

5

2

71



ITS336 ITS336 Lecture 5. Local Search

Exercise 5.1 A local search problem represents a state by an ordered pair.
The initial state is (0, 0). The successors of a state (x, y) are (x ≠ 1, y),
(x + 1, y), (x, y ≠ 1), and (x, y + 1). The objective function is shown in the
following figure. Use the hill climbing algorithm to search for the state with
maximum objective value.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

9

8 7 8

8

888

7

76

5

6 6 6

6

56

4555

3

2

2

3

44

55

67

6

77

7

6

6

6 6 7 7 7

7

7

7 5

5

6

5

54

4

5 4

4

4

55

333

4 3 4 3

66

6 7

5 5 5

6

6

555

5

5

4

3 4 4 4 5

4

4

4

44

3 3 4 3

4

4

3

2

1

72



ITS336 ITS336 Lecture 5. Local Search

5.2.1. Random-restart Hill Climbing
To avoid getting stuck in local maxima, the hill climbing search can be con-
ducted multiple times. In each iteration, it starts from di�erent randomly
generated initial states.

Exercise 5.2 Conduct the random-restart hill climbing on the following
space.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

9

8 7 8

8

888

7

76

5

6 6 6

6

56

4555

3

2

2

3

44

55

67

6

77

7

6

6

6 6 7 7 7

7

7

7 5

5

6

5

54

4

5 4

4

4

55

333

4 3 4 3

66

6 7

5 5 5

6

6

555

5

5

4

3 4 4 4 5

4

4

4

44

3 3 4 3

4

4

3

2

1

73



ITS336 ITS336 Lecture 5. Local Search

Code 5.2 Random Restart Hill Climbing Algorithm
1 from hillclimbing import *
2
3
4 def random_restart_hill_climbing(succ, f, rnd, n):
5 # succ = successor function
6 # f = evaluation function
7 # rnd = function that randomly generates state
8 # n = number of iterations
9 best_value = -float("inf")
1� for i in range(n):
11 s� = rnd()
12 u = hill_climbing(s�, succ, f)
13 if f(u) > best_value:
14 best_state = u
15 best_value = f(u)
16 return best_state

74



ITS336 ITS336 Lecture 5. Local Search

5.2.2. Stochastic Hill Climbing Search
The hill climbing search basically goes directly to the closest local maximum
with exploring the search space.

To allow the search to explore the space, we use the probability p to judge
if a newly generated state should be accepted.

p = 1
1 + e

current≠new
T

where T is the parameter to control how easy the worse state is selected.

Code 5.3 Stochastic Hill Climbing Algorithm
1 import random
2 import math
3
4
5 def stochastic_hill_climbing(s�, succ, f, n, t):
6 # succ = successor function
7 # f = objective function
8 # n = number of iterations
9 # t = control parameter
1� best_value = -float("inf") # negative infinity
11 u = s� # u = currrent state
12 for i in range(n):
13 s = succ(u) # generate a set of successors
14 v = random.choice(s) # randomly choose one to be the next state
15 p = 1/(1+math.exp((f(u)-f(v))/t)) # calculate probability
16 r = random.uniform(�.�, 1.�) # randomly pick "r"
17 if r < p: # move to "v" if r < p
18 u = v
19 if f(u) > best_value: # keep the best state up to now
2� best_state = u
21 best_value = f(u)
22 return best_state

75



ITS336 ITS336 Lecture 5. Local Search

Consider the following values of p based on the di�erent values of T

T e
≠13

T p e
13
T p

1 0.00000226 1.000 442413.39 0.00000226
5 0.0498 0.953 13.5 0.0691

10 0.273 0.786 3.67 0.214
20 0.522 0.657 1.92 0.343
50 0.771 0.565 1.30 0.435

1010 1.00 0.500 1.00 0.500

5.3. Simulated Annealing
Simulated annealing is based on an idea from thermodynamics.

• To grow a crystal, we heat the materials to a molten state. Then, cool
it down until the crystal structure is frozen in.

• If the cooling is done too quickly, the materials become brittle.

The parameter T in the stochastic hill-climbing can be compared to the
temperature. We start with T in a high value to allow random walks, and we
decrease T when the search is going on. This allows the exploration of the
search space at the beginning, then it goes to the optimal state in the end.

76



ITS336 ITS336 Lecture 5. Local Search

Code 5.4 Simulated Annealing Algorithm
1 import random
2 import math
3
4
5 def simulated_annealing(s�, succ, f, t�, cooling):
6 # succ = successor function
7 # f = evaluation function
8 # rnd = function that randomly generates state
9 # n = number of iterations
1� best_value = -float("inf")
11 u = s�
12 t = t�
13 i = �
14 while t > �:
15 s = succ(u)
16 v = random.choice(s)
17 if f(u) > f(v):
18 u = v
19 else:
2� p = 1/(1+math.exp((f(u)-f(v))/t))
21 r = random.uniform(�.�, 1.�)
22 if r < p:
23 u = v
24 i += 1
25 t = cooling(t, i)
26 if f(u) > best_value:
27 best_state = u
28 best_value = f(u)
29 return best_state

77



ITS336 ITS336 Lecture 5. Local Search

5.3.1. Cooling Schedule

T
i

= T0 ≠ i
T0 ≠ T

N

N

0 20 40 60 80 100

0

200

400

600

800

1000

T
i

= T0

Q

aT
N

T0

R

b

i
N

0 20 40 60 80 100

0

200

400

600

800

1000

78



ITS336 ITS336 Lecture 5. Local Search

5.4. Local Beam Search
Instead of keeping track of only 1 node, local beam search algorithm keeps (4.1.3)
track of k states while conducting the search. It starts from randomly gen-
erated k states.

The algorithm selects the k best neighbors. It may select all of the neigh-
bors if there are less than k states, and randomly select in the case of ties.
Then, these k states are used in the next iteration.

Local beam search with k states is di�erent from conducting k random
restarts hill climbing search.

Exercise 5.3 Conduct the local beam search when the beam size is 3, and
the initial states are (0, 0); (1, 8); (7, 4)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

9

8 7 8

8

888

7

76

5

6 6 6

6

56

4555

3

2

2

3

44

55

67

6

77

7

6

6

6 6 7 7 7

7

7

7 5

5

6

5

54

4

5 4

4

4

55

333

4 3 4 3

66

6 7

5 5 5

6

6

555

5

5

4

3 4 4 4 5

4

4

4

44

3 3 4 3

4

4

3

2

1

79



ITS336 ITS336 Lecture 5. Local Search

Stochastic beam search chooses k neighbors at random with higher eval-
uation states are more likely to be selected. Here, we define the probability
p as

p = e≠f(s)/T

5.5. Genetic Algorithm
Genetic Algorithm is a variant of stochastic beam search. Di�erent from (4.1.4)
other local search algorithms, GA generates successor states from a pair of
states.

Each state is denoted by a string over a finite set of alphabets, e.g. 0/1.
Successor states are generated by two basic operations: crossover, and muta-
tion. This is di�erent from the other local search algorithms.

+ =

(a)
Initial Population

(b)
Fitness Function

(c)
Selection

(d)
Crossover

(e)
Mutation

24

23

20

11

29%

31%

26%

14%

32752411
24748552
32752411
24415124

32748552
24752411
32752124
24415411

32252124
24752411
32748152

24415417

24748552
32752411
24415124
32543213

80



ITS336 ITS336 Lecture 5. Local Search

Code 5.5 Genetic Algorithm
1 import random, math
2
3 def genetic_algorithm(population, f, n):
4 # population = initial set of individuals
5 # f = evaluation function
6 # n = number of iterations
7 new_population = []
8 for i in range(n):
9 for j in range(len(population)):
1� v = evaluate(population, f)
11 x = select(population, v)
12 y = select(population, v)
13 child = cross_over(x, y)
14 r = random.uniform(�.�, 1.�)
15 if r < �.�5:
16 child = mutate(child)
17 new_population.append(child)
18 population = new_population
19 return max(population, key=f)
2�
21 def evaluate(population, f):
22 return [f(p) for p in population]
23
24 def select(population, val):
25 m = sum(val)
26 r = random.uniform(�, m)
27 c = �
28 for p, v in zip(population, val):
29 c += v
3� if c > r:
31 return p
32
33 def cross_over(x, y):
34 c = random.randint(�, len(x))
35 return x[�:c] + y[c+1:len(x)]
36
37 def mutate(x):
38 c = random.randint(�, len(x)-1)
39 x[c] = random.randint(�, 1)
4� return x

81



ITS336 ITS336 Lecture 5. Local Search

Exercise 5.4 To find the maximum value of the following function

f(x, y) = (1 ≠ x2)e≠x

2≠y + x3 ≠ y3

If x and y are set to vary between ≠3 and 3. How can we represent an
individual?

82



ITS336 ITS336 Lecture 5. Local Search

References
Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach
(3rd edition). Pearson/Prentice Hall.
Michalewicz, F. and Fogel, D. B. (1998). How to Solve It: Modern Heuristics.
Springer.

83


