
Lecture 2.

Searching – Problem
Formulation

2.1. Solving Problems by Searching
To solve problem, we first try to formulate the problem or find the model
of the problem. Then, we find the solutions from the model. Basically,
each obtained solution is a solution in terms of the model. We have more
confidence in the solution when our model accurately represents the problem.

problem formulate model solve solution

Example 2.1 A rectangle has an area of 56 square centimeters. Its height is
5 centimeters longer than its width. What is the dimension of this rectangle?

Let x be the width. Then, the height is x + 5. We set up a quadratic
equation

x(x + 5) = 56
x2 + 5x ≠ 56 = 0

Solving the equation provides the value of x.

9

ITS336 Lecture 2. Searching – Problem Formulation

2.2. Problem Solving Agents
Given a model of a problem, a problem solving agent finds a sequence of (3.1)
actions that lead from an initial state to the goal. The sequence is also
called a solution which can be executed later by the agent.

Searching is a basic technique to find a solution of problem. It is per-
formed by trying all possible actions iteratively in order to get to the goal.

Problem-Solving

Agent

model

a sequence of actions

or, a sequence of states

Example 2.2 We has a 3-liter bottle, a 5-liter bottle, as well as a water
faucet. How can we have 4 liters of water in the 5-liter bottle?

5-liter bottle3-liter bottle 5-liter bottle3-liter bottle

To solve this problem, we define a state representing the amount of water
in both bottles. Each state composes of two values i.e. the amount of water in
the 3-liter bottle, and the amount of water in the 5-liter bottle. For example,
we can write [3,�] when the 3-liter bottle is full, and the 5-liter is empty.

10

ITS336 Lecture 2. Searching – Problem Formulation

We can draw a graph showing the changes of amount of water after applying
actions. Here, each node of the graph is a state, and each edge shows an action
transforming a state to another state.

0,0

3,00,5

0,43,4

3,1

2,5

3,5

0,33,2

0,2 3,3

2,0 1,5

1,0

0,1

A solution of the problem is a path from the initial state to one of the goal
states. One of the solutions from the graph is

[�,�] æ [�,5] æ [3,2] æ [�,2] æ [2,�] æ [2,5] æ [3,4]

11

ITS336 Lecture 2. Searching – Problem Formulation

2.2.1. Problem Formulation
Here are what we need to determine as the model of a search problem.

State represents a situation of problem. A state contains all necessary in-
formation to identify a situation of problem. A state is transformed to
another state by applying an action.

Initial state is the state that the system starts in.

Goal test is the condition to determine whether a given state is a goal state.
In real-world problems, more than one state can be considered a goal.

Actions are a set of transitions between states. Di�erent states may have
di�erent sets of possible actions.
A successor function takes a state and returns a set of its possible
actions.
If we connect all possible states with the actions, it becomes a graph
called ‘state space’. However, it is usually di�cult to explicitly define
the state space in the real-world problems.

Path cost represents the cost of solutions since actions may cost di�erently.
The path cost is sometimes computed from the sum of the step costs
along the path.

PathCost =
ÿ

i

StepCost
i

Initial
state

Goal
state

Solution 1

Solution 2

12

ITS336 Lecture 2. Searching – Problem Formulation

Example 2.3 Formulate the water-measuring problem. Here, we have a
3-liter and 5-liter bottles. We want to measure 4 liters of water.

State a tuple [x,y] where x, y show the amount of water in 3- and 5-liter
bottles respectively.

Initial state a state [�,�]

Goal test check the amount of the 5-liter bottle is 4, or any state [x,4]
where 0 Æ x Æ 3.

Actions
• Empty one of the bottles.
• Fill up one of the bottles.
• Pour water from one bottle to the other bottle.

Step cost amount of water changed.

Exercise 2.1 Write a list of successors of a state [3,1].

13

ITS336 Lecture 2. Searching – Problem Formulation

2.2.2. Implementing the Problem Formulation
To develop a problem-solving agent, we implement the formulation including
the state representation, the goal test, and the successor function.

Successor function is a function accepting a state and returns a list of
successor states with costs.

Example 2.4 Implementation of the water measuring problem.

1 """ water.py """
2 # Define how to represent a state
3 class State:
4 # Each state stores the amount of water in both bottles
5 def __init__(self, x, y):
6 self.x = x # amount of water in bottle X
7 self.y = y # amount of water in bottle Y
8

9 def __str__(self):
1� # Convert a state into a string
11 return "[%d, %d]" % (self.x, self.y)
12

13 def __repr__(self):
14 # Representation of a state
15 return str(self)
16

17 def __eq__(self, s):
18 return isinstance(s, self.__class__) and \
19 self.x == s.x and self.y == s.y
2�

21 def __hash__(self):
22 return hash((self.x, self.y))
23

24 # Define the initial state
25 def initial_state():
26 # We start from the state where both bottles are empty
27 return State(�, �)
28

29 # Define how to check if a state is a goal state
3� def is_goal(s):
31 # It is a goal when bottle Y contains 4 liters
32 if (s.y == 4):
33 return True
34 return False

14

ITS336 Lecture 2. Searching – Problem Formulation

36 # Define how to generate successors according to the problem
37 def successors(s):
38 # This function returns a list of (state, cost) pairs
39 # where state is a successor of s, and
4� # cost is the cost required to generate this state
41 # Case 1: Try to empty the bottle X
42 if s.x > �:
43 # State(�, s.y) = a state where X is empty and
44 # Y remains unchanged
45 # Cost = s.x since we throw away the water in X
46 yield (State(�, s.y), s.x)
47

48 # Case 2: Try to empty the bottle Y
49 if s.y > �:
5� yield (State(s.x, �), s.y)
51

52 # Case 3: Try to fill up the bottle X
53 if s.x < 3:
54 yield (State(3, s.y), 3-s.x)
55

56 # Case 4: Try to fill up the bottle Y
57 if s.y < 5:
58 yield (State(s.x, 5), 5-s.y)
59

6� # Case 5: Try to pour water from X to Y
61 t = 5-s.y # available space of Y
62 if s.x > � and t > �:
63 if s.x > t:
64 # Pour until Y is full
65 yield (State(s.x-t, 5), t)
66 else:
67 # Pour until X is empty
68 yield (State(�, s.y+s.x), s.x)
69

7� # Case 6: Try to pour water from Y to X
71 t = 3-s.x # available space of X
72 if s.y > � and t > �:
73 if s.y > t:
74 # Pour until X is full
75 yield (State(3, s.y-t), t)
76 else:
77 # Pour until Y is empty
78 yield (State(s.x+s.y, �), s.y)

15

ITS336 Lecture 2. Searching – Problem Formulation

We can then create a Python script to test the implementation.
1 """ water_sample.py """
2 import water
3

4 s1 = water.initial_state()
5 print("initial state =", s1)
6 print("is_goal(s1) =", water.is_goal(s1))
7 print("successors(s1) =", end=" ")
8 for s in water.successors(s1):
9 print(s, end=" ")
1� print()
11 print("-----------------")
12

13 s2 = water.State(3, 4)
14 print("s2 =", s2)
15 print("is_goal(s2) =", water.is_goal(s2))
16 print("successors(s2) =", end=" ")
17 for s in water.successors(s2):
18 print(s, end=" ")
19 print()

initial state = [�, �]
is_goal(s1) = False
successors(s1) = ([3, �], 3) ([�, 5], 5)

s2 = [3, 4]
is_goal(s2) = True
successors(s2) = ([�, 4], 3) ([3, �], 4) ([3, 5], 1) ([2, 5], 1)

16

ITS336 Lecture 2. Searching – Problem Formulation

Exercise 2.2 8-puzzle is a sliding puzzle with the objective to order the
tiles in order by making sliding moves. If we formulate this problem as a
search problem, explain how to represent a state and the possible actions.

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

7 2 4

5 6

8 3 1

7 2 4

 5 6

8 3 1

7 2 4

5 6

8 3 1

7 4

5 2 6

8 3 1

7 2 4

5 3 6

8 1

7 2 4

8 5 6

3 1

2 4

7 5 6

8 3 1

1 2 3

4 5 6

7 8

…

7 2 4

5 3 6

8 1

7 2 4

5 3 6

8 1

State space

17

ITS336 Lecture 2. Searching – Problem Formulation

(This page is intentionally left blank.)

18

ITS336 Lecture 2. Searching – Problem Formulation

Example 2.5 Implementation of the 8-puzzle problem.
1 """ eight_puzzle.py """
2 import copy
3 class State:
4 def __init__(self, b, r, c):
5 # b = a list showing the tile locations
6 # r,c = the row and column of the blank
7 self.b = b
8 self.r = r
9 self.c = c
1�

11 def __str__(self):
12 return str(self.b)
13

14 def __repr__(self):
15 return str(self)
16

17 def pretty_print(self):
18 print("+---"*3 + "+")
19 for i in range(9):
2� print("|", self.b[i], end=" ")
21 if i % 3 == 2:
22 print("|")
23 print("+---"*3 + "+")
24

25 def move_blank_to(self, new_r, new_c):
26 tmp = self.b[self.r*3 + self.c]
27 self.b[self.r*3 + self.c] = self.b[new_r*3 + new_c]
28 self.b[new_r*3 + new_c] = tmp
29 self.r = new_r
3� self.c = new_c
31

32 def __hash__(self):
33 return hash(tuple(self.b))
34

35 def __eq__(self, s):
36 return isinstance(s, self.__class__) and self.b == s.b
37

38 def initial_state():
39 b = [7, 2, 4, 5, �, 6, 8, 3, 1]
4� r = 1

19

ITS336 Lecture 2. Searching – Problem Formulation

41 c = 1
42 return State(b, r, c)
43

44 def is_goal(s):
45 return s.b == [1, 2, 3, 4, 5, 6, 7, 8, �]
46

47 def is_valid_location(r, c):
48 if r >= � and r <= 2 and c >= � and c <= 2:
49 return True
5� return False
51

52 def successors(s):
53 # Case 1: Try to move the blank up
54 new_r = s.r-1
55 new_c = s.c
56 if is_valid_location(new_r, new_c):
57 t = copy.deepcopy(s)
58 t.move_blank_to(new_r, new_c)
59 yield (t, 1)
6�

61 # Case 2: Try to move the blank down
62 new_r = s.r+1
63 new_c = s.c
64 if is_valid_location(new_r, new_c):
65 t = copy.deepcopy(s)
66 t.move_blank_to(new_r, new_c)
67 yield (t, 1)
68

69 # Case 3: Try to move the blank to the left
7� new_r = s.r
71 new_c = s.c-1
72 if is_valid_location(new_r, new_c):
73 t = copy.deepcopy(s)
74 t.move_blank_to(new_r, new_c)
75 yield (t, 1)
76

77 # Case 4: Try to move the blank to the right
78 new_r = s.r
79 new_c = s.c+1
8� if is_valid_location(new_r, new_c):
81 t = copy.deepcopy(s)
82 t.move_blank_to(new_r, new_c)
83 yield (t, 1)

20

ITS336 Lecture 2. Searching – Problem Formulation

1 """ eight_puzzle_sample.py """
2 import eight_puzzle as p
3 s1 = p.initial_state()
4 print("s1 is")
5 s1.pretty_print()
6 print("Successors of s1 are")
7 for t,c in p.successors(s1):
8 t.pretty_print()
9 print(t)

s1 is
+---+---+---+
| 7 | 2 | 4 |
+---+---+---+
| 5 | � | 6 |
+---+---+---+
| 8 | 3 | 1 |
+---+---+---+
Successors of s1 are
+---+---+---+
| 7 | � | 4 |
+---+---+---+
| 5 | 2 | 6 |
+---+---+---+
| 8 | 3 | 1 |
+---+---+---+
+---+---+---+
| 7 | 2 | 4 |
+---+---+---+
| 5 | 3 | 6 |
+---+---+---+
| 8 | � | 1 |
+---+---+---+
+---+---+---+
| 7 | 2 | 4 |
+---+---+---+
| � | 5 | 6 |
+---+---+---+
| 8 | 3 | 1 |
+---+---+---+
+---+---+---+
| 7 | 2 | 4 |
+---+---+---+
| 5 | 6 | � |
+---+---+---+
| 8 | 3 | 1 |
+---+---+---+

21

ITS336 Lecture 2. Searching – Problem Formulation

Exercise 2.3 8-queens is a puzzle on placing eight queens on an 8◊8 chess
board. Explain how to represent a state, the goal test, and the actions.

Q

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

22

ITS336 Lecture 2. Searching – Problem Formulation

Example 2.6 There are many ways to formulate the 8-queens problem.
Here is another formalation.

State an 8-tuple representing the row number that a queen is placed in each
column; 0 means no queen in that column; no attacking between any
pair of queens is allowed. For example,

Q

Q

Q

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1, 7, 4, 0, 0, 0, 0, 0][

Q

Q

Q

Q

Q

Q

Q

Q

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

2, 4, 6, 8, 3, 1, 7, 5][

Initial state an empty chess board i.e. [�,�,�,�,�,�,�,�]

Goal test a board with 8 queens on the board

Actions add a queen to any row in the leftmost empty column. This new
queen must not attacked any other queen.

Any formulations can be used to find a solution for the 8-queen problem.
In the 1st formulation, there are 64 · 63 · 62 · 61 · 60 · 59 · 58 · 57 ¥ 1.8 ◊

1014 possible states. In the 2nd formulation, there are only 2,057 states.

23

ITS336 Lecture 2. Searching – Problem Formulation

Example 2.7 Implementation of the 8-queens problem.
1 import copy
2

3 # Set size of the board
4 N = 8
5 class NQueen:
6 def __init__(self):
7 self.b = [�]*N
8 self.n = �
9

1� def __str__(self):
11 return str(self.b)
12

13 def __repr__(self):
14 return str(self)
15

16 def pretty_print(self):
17 print("+---"*N + "+")
18 for i in range(1, N+1):
19 row = ""
2� for j in range(N):
21 if self.b[j] == i:
22 row += "| Q "
23 else:
24 row += "| "
25 row += "|"
26 print(row)
27 print("+---"*N + "+")
28

29 def initial_state():
3� s = NQueen()
31 # s.b[s.n] = 2;
32 # s.n += 1;
33 return s
34

35 def is_goal(s):
36 if s.n == N:
37 return True
38 return False
39

24

ITS336 Lecture 2. Searching – Problem Formulation

4� def attack(r1, c1, r2, c2):
41 # return True when the queen at row r1, column c1 attacks
42 # the queen at row r2, column c2
43 if r1 == r2 or c1 == c2:
44 # Two queens are on the same row or column
45 return True
46 if (r1-r2) == (c1-c2) or (r1-r2) == (c2-c1):
47 # Two queens are on the same diagonal line
48 return True
49 return False
5�

51 def is_okay_to_add(s, q):
52 # return True when adding a queen into a state s at row q
53 # does not cause any attack
54 for i in range(s.n):
55 if attack(s.b[i], i, q, s.n):
56 return False
57 return True
58

59 def successors(s):
6� # Try to place a queen on the next column
61 for i in range(1, N+1):
62 if is_okay_to_add(s, i):
63 t = copy.deepcopy(s)
64 t.b[t.n] = i
65 t.n += 1
66 yield (t, 1)

25

ITS336 Lecture 2. Searching – Problem Formulation

Exercise 2.4 From an undirected graph shown below, we want to color
the nodes of the graph using four colors, i.e. red, green, blue, and yellow.
Formulate this graph-coloring problem as a search problem.

A B C

DE

F

G

26

ITS336 Lecture 2. Searching – Problem Formulation

2.3. Searching for Solutions
Problem-solving agents find a solution by conducting search. Here is the
search algorithm.

1. Start from the initial state

2. Apply all possible actions to the state, generate the set of successors,
and keep them in a data structure.

3. Choose one of the successors out of the data structure.

4. Iteratively follow step 2 and 3 until the goal test is satisfied.

5. Trace back to obtain the sequence of actions from the goal state to the
initial state

27

ITS336 Lecture 2. Searching – Problem Formulation

References
Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach
(3rd edition). Pearson/Prentice Hall.
Michalewicz, F. and Fogel, D. B. (1998). How to Solve It: Modern Heuristics.
Springer.

28

