
Chapter 6

Instruction Level
Parallelism

Most of the modern processors are designed to execute multiple in-
structions at the same time in order to improve the execution speed.
In this chapter, we study a number of techniques to achieve the In-
struction Level Parallelism.

6.1 Superpipelining

Similar to the multi-cycle implementation, the clock period in the
pipelined implementation is set based on the slowest stage in the
pipeline, i.e.

P = max{Pf , Pd, Pe, Pm, Pwb}

Different from the multi-cycle implementation, the processor com-
pletes one instruction every cycle. Or, we can say that CPI of the
pipelined implementation is approximately 1.

Therefore, shortening the clock period is a way to improve the
performance. This can be done by subdividing each pipeline stage.

135

CSS224 Computer Architectures

Example 6.1 Suppose we can subdivide each stage of the pipeline
into 3 substages.

Fetch Decode Execute Memory Write back

Fetch Decode Execute Memory Write back

subdividing

1

Instr.

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

1

Instr.

2

3

4

5

6

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F1 F2 F3 D1 D2 D3 E1 E2 E3 M1 M2 M3 W1 W2 W3

F1 F2 F3 D1 D2 D3 E1 E2 E3 M1 M2 M3 W1 W2 W3

F1 F2 F3 D1 D2 D3 E1 E2 E3 M1 M2 M3 W1 W2 W3

F1 F2 F3 D1 D2 D3 E1 E2 E3 M1 M2 M3 W1 W2 W3

F1 F2 F3 D1 D2 D3 E1 E2 E3 M1 M2 M3 W1 W2 W3

F1 F2 F3 D1 D2 D3 E1 E2 E3 M1 M2 M3 W1 W2 W3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cycle

Cycle

136

CSS224 Computer Architectures

Exercise 6.1 What is the throughput, the number of instructions
executed per second, of the following pipelined implementation?

Here, each stage requires 100 picoseconds for its task, and a tem-
porary storage requires additional 20 picoseconds to save the result.

F

100 ps 20 ps

D

100 ps 20 ps

E

100 ps 20 ps

M

100 ps 20 ps

W

100 ps 20 ps

What are the throughputs when we subdivide each stage into 3 and 5
substages, respectively?

137

CSS224 Computer Architectures

Table 6.1: Pipeline Depths in Real-world Processors
Processors Depth
UltraSPARC T1 6
PowerPC G4e 7
UltraSPARC T2, SPARC T3, ARM Cortex A9 8
AMD Athlon, Qualcomm Scorpion 10
Qualcomm Krait 11
Intel Pentium Pro/II/III, AMD Athlon 64/Phenom 12
Apple A6 12
Nvidia Denver 13
UltraSPARC III/IV, Intel Core 2, Apple A7/A8 14
Intel Core Gen 2, 3, 4, 5, 6, 7 14/19
ARM Core A15/A57 15
PowerPC G5, Intel Core Gen 1 16
AMD Bulldozer/Piledriver/StreamRoller 18
Pentium 4 20
Pentium 4E 31

138

CSS224 Computer Architectures

6.2 Multiple Issue

Another approach to improve the performance is to replicate the pipeline
stages. Therefore, multiple instructions can be executed at the same
time. This technique is called multiple issue.

1

Instr.

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

Cycle

1

Instr.

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

Cycle

However, replicating the stages does not make the throughput of
the process drastically increase. For example, having two copies of the
pipeline stages does not double the instruction execution speed. This
is because of the dependency among instructions. Here, any type of
dependencies, i.e. RAW, WAR, and WAW, may cause data hazards
in the execution.

139

CSS224 Computer Architectures

Moreover, it may be more cost effective when parts of the pipeline
stages are replicated.

The following processor can issue 3 instructions in one cycle. How-
ever, they have four different function units: (1) integer, (2) floating-
point computation, (3) branch, and (4) memory.

Fetch

Decode

Integer Write back

Float 1 Float 2 Float 3 Write back

Test Branch

Address Mem 1 Mem 2 Write back

140

CSS224 Computer Architectures

6.2.1 Very Long Instruction Word (VLIW)

VLIW is an approach to handle data hazards in multiple-issue pro-
cessors. It is done by grouping a number of instructions that can be
performed at the same time into one issue packet. This grouping is
based on the structure of the pipeline.

The processor then execute all the instructions in the packet with-
out checking the dependency between the instructions. To combine
instructions into a packet, we need to redesigned the instruction for-
mat to make a very long instruction. This becomes the name of this
approach.

Intel Itanium is the first realization of VLIW. It was initially de-
signed to be a successor of the IA-32 architecture. However, it is
not popular since it is not backward compatible. Itanium is designed
to fetch bundles of instructions. Each bundle is 128 bits long, and
composes of 3 instructions.

Instruction 1 Instruction 2 Instruction 3

template

128 bits

41 bits

A special compiler is needed to check the dependencies and re-
order the instructions to maximize the performance of the processor.
Having the compiler reorder the instructions makes the processor be-
come less complicated since it does not a functional unit to check the
dependencies between instructions. Moreover, it makes the processor
consume less power. However, the machine code will depend on the
microarchitecture of the processor. It is not easy to execute the same
machine code on different processors.

141

CSS224 Computer Architectures

Exercise 6.2 A processor has two functional units: (1) ALU or
branch instruction, (2) memory instruction. It can fetch a bundle of
two instructions at a time. Reorder the instructions to avoid as many
pipeline stalls as possible. Assume branches are predicted, so that
control hazards are handled by the hardware.

mrmov have a use latency of one clock cycle, which prevents one
instruction from using the result without stalling.

0x00 mrmov (%rcx), %r8
0x0A add %rdx, %r8
0x0C rmmov %r8, (%rcx)
0x16 add $-8, %rcx
0x18 bne 0x00
0x21 hlt

Cycle ALU/Branch Memory

142

CSS224 Computer Architectures

Loop Unrolling

From the previous exercise, we can improve the speed of the program
by making a four copies of the loop body. This reduces the branch
penalties, and the unnecessary overhead. This technique is called loop
unrolling.

Normal loop
int i;
for(i=0; i<100; i++) {
A[i] += 10;

}

After loop unrolling
int i;
for(i=0; i<100; i+=4) {
A[i] += 10;
A[i+1] += 10;
A[i+2] += 10;
A[i+3] += 10;

}

143

CSS224 Computer Architectures

Example 6.2 Show how the loop unrolling help improve the exe-
cution speed. Assume that the number of elements is a multiple of
four.

0x00 mrmov (%rcx), %r8
0x0A add %rdx, %r8
0x0C rmmov %r8, (%rcx)
0x16 add $-8, %rcx
0x18 bne 0x00
0x21 hlt

Cycle ALU/Branch Memory

144

CSS224 Computer Architectures

Register Renaming

In the previous example, additional registers are required to perform
loop unrolling. Those registers are automatically assigned by the com-
piler. This technique is called register renaming.

The register renaming technique can be used to eliminated the
WAW and WAR dependencies. For example,

1) add %rcx, %rdx
2) irmov $10, %rdx ----> irmov $10, %r8
3) sub %rax, %rdx ----> sub %rax, %r8

1) add %rcx, %rdx
2) irmov $10, %rcx ----> irmov $10, %r8

Exercise 6.3 Renaming registers in the following program to elim-
inate WAW and WAR dependencies.

Before renaming After renaming

i1) irmov $10, %rax

i2) rrmov %rax, %rbx

i3) mrmov 4(%rax), %rcx

i4) add %rcx, %rdx

i5) push %rdx

i6) pop %rax

145

CSS224 Computer Architectures

6.2.2 Superscalar

Superscalar is used to refer to a multiple-issue processor equipped
with a hardware component for dynamic pipeline scheduling. It has
an advantage over the VLIW processors that the same program can be
shared among different microarchitectures with recompilation. How-
ever, the additional hardware component consumes more power to
execute programs.

There are three different ways to execute programs with the dy-
namic pipeline scheduling.

1. In-order issue with in-order completion

2. In-order issue with out-of-order completion

3. Out-of-order issue with out-of-order completion

146

CSS224 Computer Architectures

Example 6.3 Given a superscalar processor with the following set-
tings:

• The processor can fetch and decode 2 instructions at a time,

• It is equipped with 3 functional units i.e. integer adder, integer
multiplier, and floating-point computation,

• Two instructions can be completed at a time,

• The floating-point calculation requires 2 cycles for the execution.

Instruction Fetch

Reservation

Station

Reservation

Station

Reservation

Station

Integer

Addition

Integer

Multiplication

Floating-point

Calculation

Write back

and Decode

Show how to dynamically execute the following instructions using
three different policies.

i1) fadd f2, f1 // f1 = f1 + f2
i2) add r1, r2 // r2 = r2 + r1
i3) mul r3, r4 // r4 = r4 * r3
i4) mul r5, r6 // r6 = r6 * r5
i5) add r6, r7 // r7 = r7 + r6
i6) add r8, r9 // r9 = r9 + r8

147

CSS224 Computer Architectures

In-order issue with in-order completion

Instructions are issued according to their orders in the program.
An instruction cannot be issued before its previous ones has been
issued, and it cannot be completed before its previous ones has been
completed.

i1) fadd f2, f1 // f1 = f1 + f2
i2) add r1, r2 // r2 = r2 + r1
i3) mul r3, r4 // r4 = r4 * r3
i4) mul r5, r6 // r6 = r6 * r5
i5) add r6, r7 // r7 = r7 + r6
i6) add r8, r9 // r9 = r9 + r8

Instr. Cycle
1 2 3 4 5 6 7 8

i1
i2
i3
i4
i5
i6

148

CSS224 Computer Architectures

In-order issue with out-of-order completion

Instructions are issued according to their orders in the program.
But an instruction may complete before its previous ones when the
instruction does not depend on the previous instructions. A resource
conflict and a data dependency may cause the instruction issuing to
be stalled.

i1) fadd f2, f1 // f1 = f1 + f2
i2) add r1, r2 // r2 = r2 + r1
i3) mul r3, r4 // r4 = r4 * r3
i4) mul r5, r6 // r6 = r6 * r5
i5) add r6, r7 // r7 = r7 + r6
i6) add r8, r9 // r9 = r9 + r8

Instr. Cycle
1 2 3 4 5 6 7 8

i1
i2
i3
i4
i5
i6

149

CSS224 Computer Architectures

Out-of-order Issue with out-of-order completion

Out-of-order issue allows instructions to be decoded continuing re-
gardless of the resource conflict and dependency. After the processor
finishes decoding instructions, they are saved in a buffer called in-
struction window. The instructions are then issued into the execute
stage when the particular functional units are available, and no de-
pendencies block them.

i1) fadd f2, f1 // f1 = f1 + f2
i2) add r1, r2 // r2 = r2 + r1
i3) mul r3, r4 // r4 = r4 * r3
i4) mul r5, r6 // r6 = r6 * r5
i5) add r6, r7 // r7 = r7 + r6
i6) add r8, r9 // r9 = r9 + r8

Instr. Cycle
1 2 3 4 5 6 7 8

i1
i2
i3
i4
i5
i6

150

CSS224 Computer Architectures

Table 6.2: Issue width in Real-world Processors
Processors Issue

width
UltraSPARC T1 1
UltraSPARC T2, SPARC T3, ARM Cortex A9 2
Qualcomm Scorpion 2
Intel Pentium Pro/II/III/M, Pentium 4 3
Qualcomm Krait, Apple A6 3
ARM Core A15/A57 3
UltraSPARC III/IV, PowerPC G4e 4
AMD Bulldozer/Piledriver/StreamRoller 4
PowerPC G5 5
AMD Athlon 64/Phenom,Core 2, Core Gen 2,3 6
Apple A7/A8 6
Nvidia Denver 7
Intel Core Gen 4, 5, 6, 7 8

151

CSS224 Computer Architectures

6.3 Branch Instructions

6.3.1 Predicated Instruction

Since conditional branch instructions may cause control hazards and
stalls the execution for a number of cycles, a new type of instruction
is introduced into the ISA, i.e. conditional move. This instruction
is executed in the same manner as the move instruction. But the
conditional move instruction is committed only when the condition is
true.

Conditional Branch
cmp %rcx, %rax
jg L2
mov %r8, %r10

L2:

Conditional Move
cmp %rcx, %rax
cmovle %r8, %r10

6.3.2 Speculative Execution

Speculation execution is another approach to handle the control haz-
ards. In this approach, the processor immediately fetches and starts
executing the instructions based on the outcome of the branch predic-
tion. But the results will not be committed until the outcome of the
branch is known.

However, if the prediction is incorrect, the processor needs to flush
the pipeline, and reexecute the correct sequence of instructions.

152

